Nonparametric analysis of covariance using quantile curves
نویسندگان
چکیده
We consider the problem of testing the equality of J quantile curves from independent samples. A test statistic based on an L2-distance between non-crossing nonparametric estimates of the quantile curves from the individual samples is proposed. Asymptotic normality of this statistic is established under the null hypothesis, local and fixed alternatives, and the finite sample properties of a bootstrap based version of this test statistic are investigated by means of a simulation study. AMS Subject Classification: 62G10, 62G35
منابع مشابه
A Direct Approach to Inference in Nonparametric and Semiparametric Quantile Regression Models
This paper makes two main contributions. First, we construct “density-free” confidence intervals and confidence bands for conditional quantiles in nonparametric and semiparametric quantile regression models. They are based on pairs of symmetrized k-NN quantile estimators at two appropriately chosen quantile levels. In contrast to Wald-type confidence intervals or bands based on the asymptotic d...
متن کاملA Nonparametric Model-based Approach to Inference for Quantile Regression
In several regression applications, a different structural relationship might be anticipated for the higher or lower responses than the average responses. In such cases, quantile regression analysis can uncover important features that would likely be overlooked by traditional mean regression. We develop a Bayesian method for fully nonparametric model-based quantile regression. The approach invo...
متن کاملModel-based approaches to nonparametric Bayesian quantile regression
In several regression applications, a different structural relationship might be anticipated for the higher or lower responses than the average responses. In such cases, quantile regression analysis can uncover important features that would likely be overlooked by mean regression. We develop two distinct Bayesian approaches to fully nonparametric model-based quantile regression. The first appro...
متن کاملNon-crossing nonparametric estimates of quantile curves
In this paper a new nonparametric estimate of conditional quantiles is proposed, that avoids the problem of crossing quantile curves [calculated for various p ∈ (0, 1)]. The method uses an initial estimate of the conditional distribution function in a first step and solves the problem of inversion and monotonization with respect to p ∈ (0, 1) simultaneously. It is demonstrated that the new esti...
متن کاملA Bayesian Nonparametric Approach to Inference for Quantile Regression
We develop a Bayesian method for nonparametric model–based quantile regression. The approach involves flexible Dirichlet process mixture models for the joint distribution of the response and the covariates, with posterior inference for different quantile curves emerging from the conditional response distribution given the covariates. An extension to allow for partially observed responses leads ...
متن کامل